You are currently viewing Machine Learning & Artificial Intelligence Tools/Frameworks

Machine Learning & Artificial Intelligence Tools/Frameworks

  • Post author:

Machine Learning (ML) has emerged as an important technology that is quickly becoming a part of our everyday life. Working with Artificial Intelligence (AI) technology, ML allows software applications to learn from the data and become more accurate in predicting outcomes without human intervention and without being explicitly programmed. To make this happen, programmers use tools and libraries to handle ML tasks. 

Here is an overview of some of the most common tools used to make this technology work:

Scikit Learn is a free software ML library for the Python programming language. It is a simple and efficient tool for data mining and data analysis. It is built on Numpy, Scipy, and Matplotlib platforms and provides a range of supervised and unsupervised learning algorithms in Python such as classification, regression, clustering and more. Scikit Learn is the basic building block for any Machine Learning algorithm.

KNIME is a free and open-source data analytics reporting and integration platform that is built for powerful analytics on a GUI based workflow. This platform is used for gathering and wrangling data, data modeling and visualization, and data management, deployment and optimization. If someone wants to work on data analytics but doesn’t know how to code they can easily use this tool to derive insights.

Tensorflow is one of the popular libraries for machine learning and deep learning tasks. It is an open-source library built by Google Brain team and it is used for numerical computation and large-scale machine learning. It is especially useful for graphics applications which deal with images and videos. Tensorflow provides accessible and readable syntax which provides essential and easy-to-use programming resources. This platform uses Keras and other high-level APIs to run smoothly. It can run both on CPUs and GPUs also it relies on user-defined static graph concepts for computational models. According to the developer’s economics community, 86% of Machine Learning developers use TensorFlow to run their applications.

WEKA is an open-source Java software. It utilizes a collection of Machine Learning algorithms for data mining and data exploration tasks and is one of the most powerful machine learning tools for understanding and visualizing machine learning algorithms on local machines. WEKA uses both a graphic and command-line interface and is very good visualization software. It provides predictive modeling and visualization and is an environment for comparing learning algorithms and graphic representation data. One problem users have encountered, however, is there is very little documentation and online support available for this platform.

Pytorch is a Python based library built to provide flexibility as a deep learning deployment platform. It is actively used by Facebook for all their Machine Learning and deep learning applications.  It comes with a dynamic computational graph which makes it easier to execute relatively small parts of code. Users don’t have to wait for a long compilation process to build and run their models, which means computations can be run almost instantaneously. The platform is effective in providing rapid prototyping and analyzing research ideas with quick feedback. Pytorch has proven to be an effective tool that allows sharing across teams using a standardized framework.

Keras is an open-source neural network Python library. It is capable of running on top of TensorFlow, Microsoft Cognitive Toolkit or Theano. It is designed to enable fast experimentation with deep neural networks and is modular and extendable. The platform has a high-level of API that helps to run on TensorFlow CNTK, Theano or MxNet. It is also popular because of its ease-of-use and syntactic simplicity facilitating fast development. Keras is slower than TensorFlow and PyTorch but it has simple architecture and is more readable and concise. It is preferred when implementing rapid prototyping, such as quickly building and testing neural networks with minimal lines of code. There is a single line of code used for implementing Keras which makes it a preferable framework for programmers. It is more suitable for small size datasets and it is recommended for beginners due to its simple and easy-to-understand design.

Rapidminer is a data science software platform for teams that unites data preparation, machine learning, deep learning, text mining and predictive model deployment. It has a powerful and robust graphic user interface that enables users to create, deliver and maintain predictive analytics. Uncluttered, disorganized and seemingly useless data becomes very valuable data with Rapidminer. It simplifies data access and structures in a way that is easy for individuals or teams to comprehend. Through GUI it helps in designing, implementing workflows and visualization of data.

Google Cloud AutoML is a suite of Machine Learning products that enable developers with less Machine Learning expertise to train high-quality models according to their business requirements. It provides a simple graphic user interface to train, test, predict, evaluate and deploy models on data provided by the user. Currently, the suite of tools includes AutoML Vision, AutoML Natural Language and AutoML Translation.

Azure ML Studio is a collaborative and drag-and-drop cloud-based tool. It can be used to create, test, and deploy predictive analytic solutions on data. It is very useful for applications because it can publish Machine Learning models as web services that can be consumed within BI tools such as Power BI, Excel or any other custom application. It also provides a visual workspace where developers create, run experiments, test and evaluate results of Machine Learning models. It can drag-and-drop datasets and connect data and algorithms through a workflow to machine learning experiments.

Leave a Reply